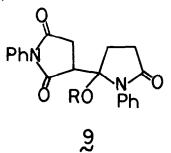

PYRIDINIUM <u>p</u>-TOLUENESULFONYLMETHYLIDE AS A FORMYL ANION EQUIVALENT Rudolph A. Abramovitch,* Suchet S. Mathur,² Daniel W. Saunders, and Danny P. Vanderpool² Department of Chemistry and Geology, Clemson University, Clemson, SC 29631

<u>Abstract</u>. Pyridinium <u>p</u>-toluenesulfonylmethylide serves as a formyl anion equivalent and, in the presence of an alcohol, undergoes 1,4-addition to <u>N</u>-substituted maleimides to give alkoxy- (or aryloxy)-methylenesuccinimides. The protected aldehyde group can be liberated readily.

Formyl anion equivalents have recently been receiving considerable attention in synthetic methodology,³ and some interesting work has been carried out to achieve 1,4-addition to enones.⁴ We now report a novel one carbon donor, namely pyridinium <u>p</u>-toluene-sulfonylmethylide (1_{i}), which adds 1,4 to <u>N</u>-substituted maleimides and leads to the formation of enol ethers 3.

The ylides (1] and substituted derivatives thereof) react with activated acetylenes⁵ and with maleic anhydride in the presence of alcohols⁶ to give indolizine derivatives. In the latter case, yields are very low when the pyridine ring does not bear an electronwithdrawing substituent. Reaction of 1-p-toluenesulfonylmethylpyridinium triflate (2) with N-phenylmaleimide in the presence of triethylamine in chloroform-ethanol (5:1 v/v)⁷ did not yield a cycloadduct. Instead, a product $C_{13}H_{13}NO_3$ (3), m/e 217, mp 178-179°C, was isolated (62% yield) together with 3-p-toluenesulfonyl-N-phenylsuccinimide (4; R = Ph) (5%), mp 176-177°C.⁸ Compound 3 exhibited C=0 stretching bands at 1700 and 1666 cm⁻¹ and the NMR spectrum showed the presence of an OC_2H_5 group, a 2H (doublet) (\underline{J} = 2Hz) at δ 3.3, and a six proton multiplet at δ 7.3 (5 aromatic protons and one deshielded vinylic proton). These data rule out all possible structures except 3 (R = Ph, R' = OC_2H_5) and 5 (or a tautomer 6). Structure 5 was ruled out by comparison of the product with an authentic sample of 5 prepared from diethyl phenylaminomethylenesuccinate.⁹ Catalytic reduction of 3 (10% Pd-C) in ethyl acetate gave 7 ⁸ (100%), mp 81-82°C [NMR (CDCl₃) δ 7.3 (m, 5H, aromatic), 3.5 (m, 4H), 2.8 (m, 3H), 1.1 (t, 3H, Et)], different from the product of hydrogenation of 5, thus ruling out structure 6. Authentic χ was prepared from 3-ethoxymethylsuccinic anhydride⁸ (bp 80°C at 0.1 mm) by treatment with aniline in ether and then heating the product with Ac₂O/AcONa at 80°C for 2 hr, and was identical with the above hydrogenation product.


The formation of alkoxy- (or aryloxy)-methylenesuccinimides (3) appears to be quite general and some examples are collected in Table I.

The protected aldehyde group in 3 (R = Ph; R' = CH₂C₆H₄-<u>p</u>-OMe) could be cleaved with HBr in CH₂Cl₂ at room temperature to give the formyl derivative 8, (40% yield) mp 162-162.5°C (hydrazone, mp 226-227°C: semicarbazone, mp 198-199°C).¹⁰ All attempts to formylate <u>N</u>-phenylsuccinimide by conventional means (e.g. ethyl formate/NaH; Vilsmeier

R	R'	Yield of ۶ٍ (%)	mp(°C)
Ph	Me	54	179-180
	Et	62	178-179
	<u>n</u> -Pr	37	101-102
	Ph	32	169-170
Me	Me	80	133
	PhCH ₂	63	113
	p-MeOC ₆ H ₄ CH ₂	54	127
<u>m</u> -NO ₂ C ₆ H ₄	Ме	67	238-240
	PhCH ₂	59	124-126
	p-MeOC ₆ H ₄ CH ₂	74	157-159
3-C1-4-FC ₆ H ₃	Et	34	174-175

TABLE I. Synthesis of 3 from Maleimides

reagent/LDA) failed. Treatment with dimethylformamide and LDA gave, instead, the dimer 9 (R = H), mp 158.5-159.5°C,¹¹ which could not be dehydrated but gave a stable tertiary tosylate (R = Tos), mp 174-174.5°C.

Studies of the scope of using \underline{l} as a formyl anion equivalent are continuing.

<u>Acknowledgements</u>. This investigation was supported by a Public Health Service Research Grant (GM-25242-02) for which we are grateful. We thank Dr. Robert Lloyd, Jr. of R. J. Reynolds Tobacco Co. for the high resolution mass spectrum of §.

REFERENCES AND NOTES

- Presented as part of a lecture at the Ylide Symposium, 176th ACS National Meeting, Miami Beach, FL., Sept. 1978, ORG 112.
- 2. Work carried out at the University of Alabama, Tuscaloosa, AL 35486.
- D. Seebach and E. J. Corey, J. Org. Chem., 40, 231 (1975). B.-T. Gröbel and D. Seebach, <u>Synthesis</u>, 357 (1977). J. I. Grayson and S. Warren, <u>J.C.S. Perkin I</u>, 2263 (1977). B. M. Trost and Y. Tamaru, <u>Tetrahedron Lett.</u>, 3797 (1975). A. I. Meyers, T. A. Tait, and D. L. Comins, <u>Tetrahedron Lett.</u>, 4657 (1978). K. M. More and J. Wemple, <u>J. Org. Chem.</u>, 43, 2713 (1978). J. D. Albright, F. J. McEvoy, and D. B. Moran, <u>J. Heterocycl. Chem.</u>, 15, 881 (1978). A. M. van Leusen, Abstracts of Papers, 7th International Congress of Heterocyclic Chemistry, Tampa, FL, August 1979, p. 9-10. These are only some of the more recent studies.
- F. G. Cowherd, M.-C. Doria, E. Galeazzi, and J. M. Muchowski, <u>Can. J. Chem.</u>, 55, 2919 (1977). T. Cohen and S. M. Nolan, <u>Tetrahedron Lett.</u>, 3533 (1978).
- 5. R. A. Abramovitch and V. Alexanian, <u>J. Org. Chem</u>., <u>41</u>, 2144 (1976).
- 6. R. A. Abramovitch and S. S. Mathur, <u>Heterocycles</u>, 5, 91 (1976).
- Subsequent experiments were carried out in methylene chloride in which the nature and quantity of alcohol could be better controlled since commercial CHCl₃ contains ethanol as a stabilizer.
- All new compounds exhibited the expected spectral data (ir, NMR, mass spec.) and gave correct C,H microanalyses.
- 9. C. A. Grob and P. Ankli, <u>Helv. Chim. Acta</u>, <u>32</u>, 2010 (1949).
- 10. I.R. (KBr) 3200 (v br), 1710 cm⁻¹ (br). N.M.R. (acetone- \underline{d}_6) δ 8.0 (S, 1, =CH-0). 7.67 (s, 5, ArH), 3.49 (S, 2, CH₂). Mass spectrum m/e (rel. intensity) 203 (61) (M⁺⁻), 175 (20), 146 (20), 119 (100) (PhNCO⁺), 93 (33), 77 (26), 55 (61). The compound appears to exist mainly in the enol form.
- 11. I.R. (KBr) 3300 (v br), 1700, 1685 cm⁻¹. N.M.R. (acetone- \underline{d}_6) § 7.7-7.0 (m, 10, ArH), 3.5-3.1 (m, 4), 2.85-2.6 (m, 4) (OH proton appears to be buried under the multiplet centered at § 3.3). The tosylate exhibited the following spectral data: I.R. (KBr) 1700 (sh), 1665, 1362, 1180 cm⁻¹; N.M.R. (CDCl₃) § 7.9 (d, 2, H ortho to SO₂), 7.6-7.1 (m, 12, ArH), 3.4 (m, 5, COCH₂ and -COCH₋), 2.7 (d, 2, CH₂), 2.45 (s, 3, CH₃).

(Received in USA 24 September 1979)